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NATIONAL ADYISOKY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE NO. 1676 

GRAPHICAL METHOD OF OBTAINING THEORETICAL 

LIFT DISTRIBUTIONS ON THIN WINGS 

AT SUPERSONIC SPEEDS 

By Clarence B. Cohen and John C. Eward 

SUMMARY 

A graphical method is presented for calculating the linearized 
lift distribution on thin wings at supersonic speeds. The technique 
may be applied to all wing regions except those influenced by inter- 
acting flow fields off the wing-plan boundaries. The lifting- 
pressure coefficients are obtained as the sum of a graphical line 
integration and several terms that are functions of only the plan 
form. 

Pressure coefficients obtained by the graphical method for a 
swept trapezoidal wing and for a wing with straight-swept leading 
edge and parabolic wing-tip are compared with those derived by 
closed-form integration. The lift distributions for two plan forms 
previously unsolved are also included. 

INTRODUCTION 

The evaluation of the theoretical performance of arbitrarily 
shaped wings at supersonic speeds has been retarded by the complex- 
ities involved in analysis when the wing boundaries are other than 
certain prescribed curves, usually straight lines. Solutions for 
the velocity potential on an arbitrary wing surface are presented 
in references 1 and 2 except for those regions influenced by inter- 
acting flow fields off the wing-plan boundaries; the integrals 
involved, however, have been tabulated only for special plan forms. 
Although the integrals may be so reduced that numerical evaluation 
of the velocity potential is feasible, the procedure for obtaining 
the lift distribution requires an additional numerical partial dif- 
ferentiation that is cumbersome and of doubtful accuracy. 

The lift distributions for a family of thin wings may be obtained 
by the methods of reference 2 as the sum of an algebraic function 
and a line integral. The line integral may be evaluated by numerical 
or graphical methods. 
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A graphical method formulated at the NACA Cleveland laboratory 
for evaluating the lift distribution for wings of arbitrary plan 
form within the limitations of reference 2 is presented. Also 
included for a Mach number of V2~ are curves showing the relations 
between the algebraic functions and the geometry of the wing. The 
application of the method to the various types of region encountered 
in analyses of general wings is discussed. As illustrations, the 
pressure coefficients obtained by this graphical method are compared 
with those derived by closed-form integration for a swept trapezoidal 
wing and for a wing with a straight leading edge and parabolic wing- 
tip boundaries. Lift distributions of two other plan forms are also 
included to illustrate the application of the method. 

SYMBOLS 

The following symbols and subscripts are used in this report: 

a2> az> •   • •> an  coefficients in series expansion defining curva- 
ture of leading edge 

a', b1, c', d'   quantities used in determining factor AFo 

cl • • • cn     coefficients in series representation of AF2 

Cp pressure coefficient 

ACp contribution to Cp of portion of leading edge 
included in segment of width e 

F]_ factor representing integral-function contribu- 
tion to Cp 

F2 factor representing contribution of integration 
over width  € to Cp 

AFg error in F2 due to neglecting curvature 

H quantity representing numerical integration 
along leading edge,. ATjEh 

h parameter defining equilateral hyperbola 

kl constant determining sweep of straight leading 
edge 
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M free-stream Mach number 

m slope of wing edge, d£ 
dx 

Q(0 series defining curvature of leading edge 

vw - v-,(up) 
B ratio of distances, — —— 

' % - "2 

r local radius of curvature 

U free-stream velocity (parallel to x-axis) 

u, v oblique coordinates whose axes lie parallel to 
Mach lines 

u2(v) or v2(u) equation of tip and trailing edge of wing 

v-j^u) or U]_(v) equation of supersonic leading edge of wing 
(inboard of foremost tangent Mach wave) 

x, y Cartesian coordinates 

y' transformed y-coordinate 

a angle of attack, radians 

ß = ^M2 - 1 

e width of strip chosen in evaluating F2 

Op 02 local angles between wing edge and free-stream 
flow direction 

i,  r\ Cartesian coordinates of point sources 

cp perturbation-velocity potential 

Subscripts: 

0 intersection of grid edge with wing-plan boundary 

L leading edge of wing 
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I left 

r right 

w wing 

ANALYSIS 

As a result of the linearized theory, the effect of angle of 
attack on the lift distribution of thin wings at supersonic speeds N 

depends upon the plan-form boundaries and is independent of the o> 
wing-section slopes. Determination of the pressure distribution of 
a thin flat plate therefore solves the problem of the lift distri- 
bution of the finite-thickness wing. Eeference 2 shows that the 
local pressure coefficients of several classes of wings with arbi- 
trary plan boundaries may be evaluated by line integrals of explicit 
functions. 

A graphical method of evaluating the lift-distribution functions 
presented in reference 2 is developed herein. In order to illus- 
trate the method developed, a simple wing including regions influ- 
enced by a supersonic leading edge, a subsonic leading edge, and a 
subsonic trailing edge (fig. l) is discussed in detail. The essen- 
tial elements in the calculations for each region are included in 
the analysis for the region B influenced by the subsonic leading 

The pressure coefficient for region B as derived in refer- 
ence 2 is 

°P ~ " rtß Jal 

_djl_ 

ab V(% " u) (v-w " v) 

(1) 
vw - n(u2) 

viw - u2 

where u2 is evaluated at v = vw. Except for the symbol r\, 
equation (l) is expressed in a set of oblique coordinates (fig. 2) 
whose axes are parallel to the Mach lines. The transformation 
equations relating the oblique and Cartesian coordinates are 
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S 
u 

2ß - ßn) 2ß ßri) 

I = § (v + u) 

»^(x-ßy) 

X = H <Tw + %) M 

n = g (v - u) 

vw = gß (x + ßy) 

y B g <vv - «w) 

> (2) 

y 

The significance of the terms of equation (l) is clarified in 
figure 3. The line integral is to he evaluated along the portion 
of the supersonic leading edge from a to b. The quantity 
[vw - V;L(U2)] can he interpreted as distance he and the quantity 
(uy. - u2) can he interpreted as the distance cP. The ratio of 
these distances is called B. For a given Mach number, the quan- 

/   du2\ 
tity ( 1 - •££- )   depends upon only the slope of the wing boundary dv, w 
at the point (u2,vw). 

By use of equations (2), the second term of equation (l) may 
he expressed in terms of E and the angle 0^ that the wing edge 
makes with the free-stream flow direction (parallel to the x-axis) 
as 

*i = i(1 

4ß 

du. 

dX vw/ 

tan 6i 

Ovi 

M (ß tan 0! + 1) 
VB (3) 

where 0^ is positive counterclockwise. This expression, eval- 

uated for M = V~2~, appears in figure 4. 

The quantities (u„. - u) and (vv - v) in the line integral 

of equation (l) are the coordinate distances (fig. 3) of each 
element drj to the point (uw,vw). The curves of 

V(uw - u) (vw - v) 
= constant = h 
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in the u,v coordinate system are a family of equilateral hyper- 
bolas asymptotic to the lines u = u^, 
hyperbolas is shown in figure 5. 

V = V, v A family of these 

If a "grid" of this type is placed with its origin at (uw,vw) 
and so alined that its axes are parallel to the u and v axes, 

the value of 

v£ 
 for any element drj (or dy) is 

[% - u) (vw - v) 
the constant h for the hyperbola passing through that element. 
The sum of the values of h taken near the center of each element 
for equal increments drj along the wing "boundary then evaluates 
the line integral of equation (l). The superposition of a wing- 
plan boundary on a hyperbolic grid for M = V2 is shown in fig- 
ure 6. A constant value of Lr\    is marked on the grid for conven- 
ience in summation. A part of the grid employed for calculations 
at M = V2 appears in figure 7. 

As shown in figure 5, the value of h increases to infinity 
as the edge of the grid is approached. In order to perform a 
numerical integration, the infinities must be excluded. Therefore 
the numerical summation should not start with element 1 (fig. 6) 
but should skip a distance large enough to enable the element 
value to be easily determined. The part of the integral omitted 
must be compensated by an analytical expression that represents 
the contribution of a section of the leading edge ää' included 
in a strip of width c  (fig. 6). 

The contribution to the line integral of the strip of width e 
may be evaluated by assuming the wing boundary to be a straight 
line near u = %. From the derivation presented in appendix A, 
this contribution is 

to 

CO 

F2 = 
4ßm 

MVfaß - l)(mß + 1) 
tan' -1 

2ßm(vw - v0) 

Me (l + ßm) 
- 1 

1 
2 

(4) 

dy 
where m = ^g:, the tangent of the angle 0g (positive counter- 

clockwise) that the leading edge makes with the flow direction at 
the intersection with the edge of the grid (point a, fig. 6), and 
(vw - v0) is the distance UP from that point to the grid origin 

(fig. 6). The value of F2 for various values of ©2* (vw " roh 
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and e is shown in figure 8 for M = V2. The dashed line in fig- 
ures 8(b) and 8(c) represents the limit for which the arc-tangent 
term in equation (4) is real. 

For the subsonic leading edge (region B, fig. 1), equations (l), 
(3), and (4) may be combined and the expression for the pressure 
coefficient becomes 

°P = " %  (H + Fl + F2) (5) 

where the numerical summation along the leading edge is repre- 
sented by 

H = Ar) (h^ + hg + h3 + . . .) = At)£h 

If nonuniform increments of r\    are desired, a weighting of each 
value of h is required. 

The analysis of the region of a wing tip influenced by a sub- 
sonic trailing edge (region C, fig. l) may be appreciably shortened 
if the Kutta-Joukowski condition is imposed. In reference 2, it 
is shown that the solution which satisfies the Kutta-Joukowski con- 
dition does not contain the term F]_. Therefore F^ is taken as 
zero in this region and the remaining evaluation is unchanged. 

When evaluating Cp in a region where v<0 (region A, 
fig. 1, or fig. 9), the value F]_ does not exist because no sub- 
sonic leading edge is included in the forward Mach cone from 
point P. The integration must be conducted over the entire wing 
leading edge between the limits of the grid a and b. Because 
h becomes infinite at the right as well as at the left limit of 
the grid, a part of the integration at the right must be replaced 
by an analytical expression similar to equation (4). Equation (4) 
can be shown to hold at this limit if (u^- - UQ) is substituted 
for (vw - v0) and (180° - 9i) is substituted for e2. ^ 

the 

value of this expression is designated F2 r the pressure coef- 
ficient in the region where v<0 becomes 

Cp = - m  (H + F2 + F2,r) (5a) 

In general, a complete wing in supersonic flow may have regions 
under the influence of both wing tips. A summary of the method of 
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obtaining lift distributions in the various types of flow field 
commonly encountered is given in appendix B. Also included is a 
numerical evaluation of the pressure coefficient at point P of 
figure 10. 

The effect of Mach number on lift distribution for a given 
plan form may be determined by two alternate procedures. One 
method is to construct an integration grid and curves of F^ and 
Fg for the Mach number desired. If a large number of analyses at 
a given Mach number are to be made, this method may be preferable. 
If only a very few analyses at a given Mach number are to be made, 
however, the grid and curves of F^ and Fg may be used as con- 
structed for M = V2, provided that compensating corrections are 
made. These corrections consist in:  (l) so transforming the wing 
boundary that y' = ßy; and (2) analyzing the wing as at M = V2 
and dividing the resultant Cp/a by the value of ß. 

Some considerations' that simplify the application of the 
method appear in appendix C. Construction of the integration grid, 
choice of AT) and e, drawing size, and a special example of the 
subsonic trailing edge are discussed. 

ACCURACY OF METHOD 

In order to determine the accuracy of the method, the pressure- 
coefficient at points on two wings for which analytical expressions 
were obtainable were graphically computed and compared with the 
analytical values. The wings and the points considered appear in 
figure 11. The leading edges of both wings are swept back 30° and 
are the same except that wing A has a straight tip and wing B has 
a parabolic tip passing through similar points on the leading and 
trailing edges. The points considered are at the same x,y values 
for each wing. The results of the computations for Cp are pre- 
sented in table I. 

The magnitude of the personal error incurred in application 
of the method was evaluated by trial. Values of Cp/a were inde- 
pendently obtained by nonprofessional personnel using the graphical 
method, and were also analytically calculated. For wing A, the results 
of one of the computers contained an average error of 0.46 percent 
and a maximum error of 0.71 percent (table I). Another computer 
averaged an error of 0.53 percent with a maximum error of 1.52 per- 
cent. Results of wing B gave about the same accuracy (table I). 
These results were obtained from drawings with a wing chord of 
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4R inches. The computers estimated a time rate of approximately 

5 minutes per point when a large number of points were being 
analyzed. 

Inasmuch as the first-order expression for F2 (which also 
includes higher-order terms) assumed a straight leading edge, this 
expression was exact for the wings shown in figure 11. The accuracy 
of this expression for a curved edge has been investigated and is 
shown in appendix A. For a parabolic leading edge, the error AFg 
in Fg (including fourth-order terms) as a function of the ratio 
e/rQ (where TQ    is the radius of curvature) is presented in fig- 
ure 12. If e/rQ is small, the error in Fg due to curvature 
will be small except when 6g approaches the Mach angle, as indi- 
cated in figure 12. The corresponding error in Cp will, of course, 
be a smaller percentage. A similar trend probably holds for edges 
of different curvature. 

APPLICATIONS 

As examples of the method, the lift distributions 2Cp/a of a 
circular-plan-form wing and a straight wing with a circular tip are 
shown in figures 13 and 14, respectively, at M = V2. 

For the circular wing, in the region inboard of station D, the 
pressure at a given chordwise station increases in the outboard 
direction. For a given spanwise station, the pressure is a maximum 
at the leading edge and drops off in the flow direction. The rate 
of this decrease is a minimum at the wing root. 

Lines of constant pressure for the circular-tip wing swept 
back 30° at a Mach number of V2 are shown in figure 14. The 
Kutta-Joukowski condition was assumed for analysis of regions 
influenced by the subsonic trailing edge. The only region of high 
pressures and high pressure gradients is a small leading-edge 
region between the tangency of the foremost Mach wave and the start 
of the subsonic trailing edge. The pressure gradient over most of 
the tip is roughly in the spanwise direction. 

CONCLUDING DISCUSSION 

A graphical method based on linearized supersonic-flow theory 
has been developed for calculating the lift distributions on thin 
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wings at supersonic speeds. The method is applicable to all of the 
regions of arbitrary wings except those affected by interacting 
flow fields off the wing-plan boundaries. The determination of 
the lifting-pressure coefficient for a given point has been found 
to require 5 to 10 minutes with a resultant average error of less 
than 1 percent as determined by comparison with known analytical 
solutions. 

Flight Propulsion Research Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, May 13, 1948. 
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APPENDIX A 

CONTRIBUTION TO Cp OF LEADING-EDGE SEGMENT 

INCLUDED IN STRIP OF WIDTH c 

In order to determine the contribution to Cp of a segment of 
vidth €,    the integral of equation (1) must be evaluated. In the 
x,y coordinate system, this integral is 

ACp.-f Ja_ 
Vu- O2 -ß2 (y- n)2 

(Al) 

The integral is considered in the region near 

(x - e0)
2 -ß2 (y - T)0)

2
 = C (A2) 

The subscript 0 refers to the point of intersection of the grid 
edge and the wing-plan boundary. In particular, the positive root 
that defines the left forward Mach line from the point fc,y) is 

(x - e0) = ß (y - %) -§(▼*- ▼o) 

Treatment of € as a variable in the vicinity of the point 

(n0, t 0) yields 

n = % + e N 

(A3) 

where 

and 

m 

m Ue;0 
> 

Q(e) = age2 + a3e
3 + a4 e

4 + . . . 
J 

(A4) 
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Substitution of equation (A4) in equation (Al) gives 

-g(ACp) _ 
2a 

de 

o     ^[x- t0-£-^)]2 -ß2 (y - io - e> 

=   (A5) 

2 

Now, if Q(e) = 0, the leading edge is straight and the inte- 
gral may he written 

- £ <'CP> ■ 
re de 

1 - m2 ß2 

\—?-;«♦ 2ß2 (y - TI0) - 
2(x -In) 

ID 

(A6) 

which becomes 

2a I 2m 

V(mß - l)(mß + 1) 
tan" 

2ßm (vw - T0) 

Me (1 + ßm) 
- 1 

-,      1" 
2 

From equation (5) of the text, 

** = - g§  (AL) Ma 

4ßm 

MVÖnß - 1)(mß + x) 
tan' -1 

2ßm (vw - v0) 

Me (1 + ßm) 
- 1 

1 
2 

(A6a) 

(A7) 

This function, which is equation (4) of the text, is shown in fig- 
ure 8 for various values of 62    and (vw - v0)/e for M = V2. 

If the leading edge is curved, Q(e) ^ 0 and equation (A5) 
must be rearranged. The quantity in the radical may be expressed 
as 
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a» 1 

where 

a' = (c' + d'e) e = 2ß2 (y - T)0) 

2 

2 (x - i0) 
m ID' 

b« = 2 (x - £0) Q " 2 (J)Q - Q; 

2 (x - |0)(mß - 1) 
c« = 

,  (1 - m* ß^) 

m 

2 R2i 
d' = 

m< 

Then equation (AS) may be written 

- £ (ACp) 
de 

2a 

Expanded in a power series, 

k v^V^ 

,.\2 1 1       lb'       1 v 3 /b'V 
7=V = 1 + 2^+2X4ia^J    + 

Equation (A5) then becomes 

&<*"»> 

£^+r 
lo   ^a' 

ß2)€ > € 

(A8) 

lb'      13 /b'\2 1 a 
.2 iT + 2 X 4 VW    +   *   '   -jdc 

(A5a) 

The first term is identical with the integral of equation (A6). 
The contribution of the curvature to   F2    may therefore be written 
as 
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AFo = 2ß 
M 

-^♦I*I£)2—-] 
Jo 

de 

/a« 
(A9) 

The expressions for —j   and -p= in equation (AS) may he 
a     Yat 

expanded in a power series to yield 

b4 = ^-i[u-e0)a2]c + a'  c (x-|0)a3-^-|l(x-eo)a8] 

+ [(*-£ 0)
a4 " -^ a22 " (tO (x " e0)a3 + (fr) ■£ 

♦(f^ <*-*<>>■*] «^ 
1   1 

Va-   ^c-a + i: c) 

u: 

_1 _1_ 

Ve Vc7 i-KfO-i*!^2-!*!*!^)3'3---] 
where 

Al = -(1 + aß) 
c* " 2m (x - |0) 

(A10) 

Upon substitution of equation (A10) in equation (A9) and multi- 
plication and collection of terms according to powers of c,    there 
results 
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3 re 

^2  - f ffiJo     (3Cle2 + 5°2e2 + 7°3e2  + de 

■ f (*)* (^* Vs ♦ <* e" + (A9a) 

where 

C = | U-I0)a2 1~3 

C? = •= 
x I (3ßm - l)a2 

C* -i 

a3 + 
3a2

2 m 

4(ßm - 1)_ 
U - l0) 

3(ßm + l)(5ßm - 3)a2  (7ßm - l)a2   (3ßm - l)a3 
+ — + s  

7    32m2(x - |0)       16(ßm - l) 

aA + 
Saoagm c 3 2 

oa2 S3 

2(ßm - 1)  8(ßm - l)
2 _ 

(x - to) (All) 

C4 = 

The series of equation (A9a) converges as long as b*/a' and 
d'e/c' (defined by equations (AB) and (A10)) are less than unity. 
For rapid convergence, these ratios should "both "be small. 

As a particular example (taken at M =V2), the leading-edge 
curve may he represented by the parabola 

i = So + 1 + a2e m 

The coefficients of equation (All) evaluated in terms of the oblique 
coordinate distances then become 
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'1 " T (VW " T0)a2 

C    -i °2 " 5 

C3=f 

(3m - l)a2     3 V¥ a2
2m(vv " To^ 

4m 8(m - 1) 

3</2(m + l)(5m - 3)a2      (7m - l)a2
2   5 V2 a2

3m2(yw - vQ) 

32m2 (vw - TQ) 16(m - 1) 16(m - l)2 

C^ = .   .   . 

When the values of the coefficients are substituted in equation (A9a), 
AF2 results. 

For a parabola with a given initial slope m at the point 
(|Q, TJQ), the quantity a2 controls the radius of curvature rQ 
at that point. The ratio AF2/F2 represents the relative error 
resulting from the assumption of a straight leading edge for a 
width e when the actual edge is curved. This value from equa- 
tions (A7) and (A9a) has been plotted against the ratio e/r0* in 

figure 12, 



NACA TN No. 1676 17 

APPENDIX B 

TKEATMENT OF COMPLETE WINGS 

A tabular summation of the various flow fields encountered in 
wing problems is presented in table II and the graphical solution 
in each region is indicated. In the reference sketches for 
M = 42.,    P is the point at which the pressure coefficient is to he 
evaluated. The numerical line integration along the supersonic 
leading edge is performed from point a to point b. The direc- 
tion of integration of the line integrals is indicated by arrow- 
heads on heavy lines. For a subsonic trailing edge (sketches C, F, 
G, H), the Kutta-Joukowski condition was imposed and made F^ = 0 
for that edge. The factor F2 vanishes when the limit of the 
leading-edge line integral is other than the integration-grid edge 
(sketches D, E, F, G, H), because no infinities are then encountered. 
When the forward-reflected Mach lines from the point P cross on 
the wing surface (sketches E, F), the integration H is considered 
negative. 

The occurrence of these flow fields on a schematic wing is 
illustrated in figure 15. Each flow region is identified by the 
corresponding letter from table II. In this example, flow 
region H does not occur. 

As an example of the method, numerical calculations of the 
pressure coefficient at point P for the wing boundary shown in 
figure 10 are 

0L = 7.5° 

be = 0.0419 

— I    Fn = 0.224 
cd = 0.084      /     1 

E = ^ = 0.4988 
cd 
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H = 

02  = 125.5° 

(vw -  v0)  = 0.0772   K F2  = 0.660 

£ = 0.01 
) 

0.01  [(0.4)(31)  + 25.0 -,- 21.0 + 18.85 + 17.55 

+ 16.75 + 16.50 + 16.6]  = 1.446 

_E = + ?1 (H + J\   + F?)= 1.048 
a i 

Si 
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APPENDIX C 

SIMPLIFYING CONSIDERATIONS IN APPLICATION OP METHOD 

A simple method of obtaining coordinates of hyperbolas to con- 
struct an integration grid employs log-log graph paper. If a 
straight line of slope equal to -1 is drawn on this paper, the 
coordinates of this line, when plotted in Cartesian coordinates, 
describe the desired equilateral hyperbola. 

The addition to the grid of lines of constant v and u 
(parallel to the grid edges) with accompanying scales at the grid 
edges increases the rapidity of evaluation, because all signifi- 
cant distances may then be read directly. A part of the grid 
employed is given in figure 7. 

In choosing the value of e, the first consideration is that 
€ be large enough that the value of h may be easily determined 
for the first subsequent element. It is also seen from figure 8 
that if € is talcen a3 a simple decimal such as 0.01 or 0.02, and 
(vw " vo) ia known, the ratio (vw - VQ)/£ may be rapidly computed 
and hence Fg is rapidly determined. From figure 6, point a 
will not, in general, fall at an integral multiple of Arj; then, 
if e = NATJ where N is an integer, point a' will not, in 
general, fall on an integral multiple of ATJ. Thus a section whose 
width is less than AT] appears before the first complete leading- 
edge element and remains to be included in the numerical integra- 
tion. If this small element is evaluated in the normal manner and 
weighted according to its width, no discrepancy will occur. This 
weighting process is illustrated by the example presented in 
appendix B. 

The most prevalent personal error in the application of the 
method was in the measurement of angles ©]_ and 83> because 
on small drawings it is difficult to Judge accurately the tangency 
of a curve. Large-scale drawings are therefore recommended for 
measuring the angles. These drawings may also be used for the 
integration, although the increase in accuracy may not justify the 
accompanying inconvenience. 

For a straight supersonic leading edge, equation (l) is 
integrable and the expression for Cp becomes 
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°P ~ " Äß 

& 1 + 1        .i  /kl(«w " u2> 
tan 

% - u2    ,/ST       V Tw + klu Vs! lu2 

(Cl) 

In the region affected by the subsonic trailing edge (region abc 
of »Tigs. 16 and 17) the first term in equation (Cl) vanishes if 
the Kutta-Joukowski condition is imposed. The quantity in the 
radical of the arc-tangent term is proportional to the ratio of 
distances sP/rs (fig. 16) and hence any wing composed of the 
same leading edge and a straight line through point s would give 
the same value of Cp for any point on line sP. If lines of 

constant pressure are desired, the arc-tangent term in equa- 
tion (Cl) must be differentiated and set equal to zero. The result 
involves a derivative dug/dVy, which is determined by the slope 
of the edge at point s. Equivalent lines of constant pressure 
along line s? may thus be obtained by replacing the tip by a 
straight-line tip that is tangent at point s. The pressure along 
any v = constant line is therefore conical about a point deter- 
mined by the intersection of the extension of the leading edge and 
the tangent to the tip at u2(vw). Along v = VQ_ and v = v2 
(fig. 17), the constant-pressure lines are conical about points t^ 
and t2. By this relation, the constant-pressure lines may be 
quickly constructed and evaluation is necessary only along one line 
of constant x to determine the pressure field. The relation holds 
only in the region influenced by the subsonic trailing edge when 
the Kutta-Joukowski condition applies, for differentiation of 
equation (Cl) with the first term included yields a second deriv- 
ative that generally cannot be evaluated from straight-line 
relations. 

REFERENCES 

1. Eward, John C: Distribution of Wave Drag and Lift in the 
Vicinity of Wing Tips at Supersonic Speeds. WACA TN No. 1382, 
1947. 

2. Eward, John C: Theoretical Distribution of Lift on Thin Wings 
at Supersonic Speeds (An Extension). WACA TN No. 1585, 1948. 

*' r- 



MCA TN No.  1676 21 

to 
-o 
to TABLE I 

VALUES OF    C-D/CX    OBTAINED FOE WINGS A AND B 

Station u V 

Wing A Wing B 

Cp/a Error 
(percent) 

Cp/a Error 
(percent) 

Analytic Graphic Analytic Graphic 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

8 
7 
6 
5 
4 
3 
8 
7 
6 
5 
4 

0 
1 
2 
3 
4 
5 
2 
3 
4 
5 
6 

2.4570 
2.1354 
1.9826 
1.8577 
1.7861 
2.3877 
2.0395 
1.9295 
1.8367 
1.7861 
2.0147 

2.468 
2.148 
1.975 
1.871 
1.775 
2.400 
2.033 
1.933 
1.827 
1.797 
2.012 

0.44 
.59 
.38 
.71 
.62 
.52 
.32 
.18 
.53 
.61 
.13 

2.457 
1.866 
1.674 
1.578 
1.744 

1.775 
1.689 
1.676 
1.862 

2.447 
1.875 
1.679 
1.584 
1.733 

1.759 
1.682 
1.670 
1.865 

0.16 
.48 
.30 
.38 
.63 

.90 

.41 

.36 
' .16 

Average 0.46 0.42 
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TABLE II - PRESSURE COEFFICIENT FOR EACH WING REGION 

Type of" 
region Reference figure Pressure coefficient 

Cp= f£[H+F2 + F2,r] 

CT,= M£[H +P1 +P2 

Special features 

Affected only by supersonic 
leading edge. 

Affected by subsonic and 
supersonic leading 
edges. 

Affected by subsonic trail- 
ing and supersonic lead- 
ing edges. Kutta- 
Joukowski condition 
imposed.  F^ = 0. 

Affected by supersonic and 
both subsonic leading 
edges. _F]_ j found for 
strip ad in same manner 
as FT  for strip 

For F]_ i    use R 

and measure 9^ j 
wise at point a. 

Be. 
M 
dP 

clock- 

l" a? 

Affected by supersonic and 
both subsonic leading 
edges.  F]_ j  determined 
as for region D with 

R -H 

MACA^ 

«5 
-0 
CO 
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TABLE II - PRESSURE COEFFICIENT FOR EACH WING REGION - Concluded 

Pressure coefficient 

CP=t[-H*M 

Affected by one subsonic 
leading and one sub- 
sonic trailing edge. 
F^ i    determined as   

previously with Rj = ==* 

Kutta-Jowkowskl con- 
dition imposed on sub- 
sonic trailing edge. 
Fx = 0. 

*M 

Ma 
itß M 

Special features 

Affected by both subsonic 
trailing edges.  Kutta- 
Joukowski condition 
imposed. 

Pl,l 
0. 

Effected by both subsonic 
trailing edges.  Kutta- 
Joukowski condition 
imposed. 
pl = %* 

Shaded region is affected 
by externally interact- 
ing flow fields. 
Solution not handled 
by graphical method. 



24 NACA TN No. 1676 

A  Region influenced by 
supersonic leading edge 

B  Region influenced by 
subsonic leading edge 

C  Region influenced by 
subsonic trailing edge 

Supersonic leading edge 

U 

Supersonic 
trailing 
edge 

Subsonic 
trailing 
edge 

Figure 1. - Illustration of wing regions. 



NACA TN No. 1676 25 

u 

>" y»T) 

Figure 2. - Relation between oblique and Cartesian 
coordinates. 
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Figure 3. - Geometric interpretation of terms in equation (1). 
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CM 

(a) Range of R from 0 to 4.8. 

Figure 4. - Variation of factor F±    with R and 6X for H . V^ 
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Figure 7. - Part of integration grid employed for calculations at M «V2. 
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ATI = O.Ol 

-Wing       O- 
boundary 

CO 

ft* 

Figure 10. - Determination of Cp for specific wing boundary 

at M ■ V~2. 



NACA   TN   No.    1676 37 

CO 

(a) Wing A. (b) Wing B. 

TNACA, 

Figure 11. - Wings used for comparison of graphical and closed-form 
solutions. 
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Figure 14..- Lift distribution for M -*[%    on circular-tip wing swept back at 30°. 

2-E on subsonic leading edge = oa,  on subsonic trailing edge a 0. 
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Plow 

Subsoni 
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Figure 15. - Wing illustrating regions considered in table II. 
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r 
v s-kju 

0> 

Figure 16. - Wing with subsonic trailing edge and 
straight supersonic leading edge. 

Figure 17. - Determination of constant-pressure lines for wing with 
straight supersonic leading edge in region influenced by subsonic 
trailing edge. 


